Program Proofs

K. Rustan M. Leino

[ustrated by Kaleb Leino

The MIT Press
Cambridge, Massachusetts
London, England

© 2023 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

The MIT Press would like to thank the anonymous peer reviewers who provided
comments on drafts of this book. The generous work of academic experts is essential
for establishing the authority and quality of our publications. We acknowledge with

gratitude the contributions of these otherwise uncredited readers.

This book was set in TEX Gyre Pagella, Bera Mono, and Noto Emoji by the author.
Printed and bound in the United States of America.

[ustrated by Kaleb Leino.
Library of Congress Cataloging-in-Publication Data is available.
ISBN: 978-0-262-54623-2

10987654321

Contents

Preface
Notes for Teachers

0. Introduction

0.0. Prerequisites
0.1. Outlineof Topics
02. Dafny
03. OtherLanguages

Part 0. Learning the Ropes

1. Basics

1.0. Methods e
1.1. AssertStatements e
1.2. Working with the Verifier
1.3. Control Paths
1.4. Method Contracts i i
1.5. Functions e
1.6. Compiled versus Ghost
1.7. Summary

2. Making It Formal

2.0. ProgramState o
21. FloydLogic
22. HoareTriples
2.3. Strongest Postconditions and Weakest Preconditions
24. WP and SP o e e
2.5. Conditional Control Flow
2.6. Sequential Composition o oo
2.7. Method Calls and Postconditions
2.8. AssertStatements e
2.9. Weakest Liberal Preconditions
2.10. Method Calls with Preconditions
211. FunctionCalls

ix
XV

Vi

2.12.
2.13.
2.14.

Partial Expressions oo oL
Method Correctness o o v v i e
Summary

3. Recursion and Termination

3.0.
3.1.
3.2.
3.3.
34.
3.5.

The Endless Problem
Avoiding Infinite Recursion oo oL
Well-Founded Relations
LexicographicTuples
Default decreasesinDafny
Summary

4. Inductive Datatypes

4.0.
4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.

Blue-Yellow Trees e
Matching on Datatypes
Discriminators and Destructors
Structural Inclusion
Enumerations
Type Parameters
Abstract Syntax Trees for Expressions
Summary

5. Lemmas and Proofs

5.0.
5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
59.

Part 1.

6. Lists
6.0.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

DeclaringalLemma
UsingalLemma.
Provingalemma
BacktoBasics e
Proof Calculations
Example: Reduceo o oo
Example: Commutativity of Multiplication
Example: MirroringaTree
Example: Working on Abstract Syntax Trees
Summary

Functional Programs

List Definition 0 ..
Length L e
Intrinsic versus Extrinsic Specifications
Takeand Drop i e

Find e e
List Reversal e
Lemmas in Expressions
Eliding Type Arguments
Summary

102
106
110

118
122
130

7. Unary Numbers
7.0. Basic Definitions
71. Comparisons
7.2. Addition and Subtraction L L L
7.3. Multiplication L o
74. Divisionand Modulus
75.8ummary
8. Sorting
8.0. Specification L
8.1. Insertion Sort e
82. MergeSort
83. Summary
9. Abstraction
9.0. Grouping Declarations into Modules
9.1. ModuleImports
92. ExportSets
9.3. Modular SpecificationofaQueue
9.4. Equality-Supporting Types oL
95. Summary
10. Data-Structure Invariants
10.0. Priority-Queue Specification
10.1. Designing the Data Structure
10.2. Implementation L L L
10.3. Making Intrinsic from Extrinsic
104. Summary

Part 2. Imperative Programs

11. Loops
11.0. Loop Specifications L o o
11.1. Loop Implementations
11.2. Loop Termination
11.3. Summarizing the LoopRule.
11.4. Integer SquareRoot.o
11.5. Summary
12. Recursive Specifications, Iterative Programs
12.0. Iterative Fibonacci
12.1. Fibonacci Squared o
12.2. Powers of 2 e
12.3. Sums e e e e e e e
124. Summary
13. Arrays and Searching
13.0. About Arrays
13.1. Linear Search e

vii

161
162
162
165
167
167
172
175
175
179
181
188
189
190
190
191
194
201
204
207
208
210
212
224
229

viii

13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.

Binary Search L
Minimum e e
Coincidence Count e
SlopeSearch
CanyonSearch
Majority Vote
Summary

14. Modifying Arrays

14.0.
14.1.
14.2.

SimpleFrames. L
Basic Array Modification00
Summary

15. In-situ Sorting

15.0.
15.1.
15.2.
15.3.

Dutch National Flag
SelectionSort
Quicksort e
Summary

16. Objects

16.0.
16.1.
16.2.
16.3.
16.4.

Checksums e
Tokenizer e
Simple Aggregate Objects
Full Aggregate Objects
Summary

17. Dynamic Heap Data Structures

17.0.
17.1.
17.2.
17.3.
17 4.

= >

B.O.
B.1.
B.2.
B.3.
B4.
B.5.
B.6.
B.7.
B.8.

Lazily Initialized Arrays L.
Extensible Array
Binary Search TreeforaMap
Iterator fortheMap L o
Summary

. Dafny Syntax Cheat Sheet
Boolean Algebra

Boolean Values and Negation
Conjunction
Predicates and Well-Definedness
Disjunction and Proof Format
Implication
Proving Implications
Free Variables and Substitution
Universal Quantification
Existential Quantification o

C. Answers to Select Exercises
References

Index

Preface

Welcome to Program Proofs!

I've designed this book to teach a practical understanding of what it means to write
specifications for code and what it means for code to satisfy the specifications. In this
preface, I want to tell you about the book itself and how to use it.

Programs and Proofs

When I first learned about program verification, all program developments and proofs
were done by hand. I'loved it. ButI think I was the only one in the class who did. Even
if you do love it, it’s not clear how to connect the activity you have mastered on paper
with the activity of sitting in front of a computer trying to get a program to work. And
if you didn’t love the proofs in the first place and didn’t get enough practice to master
them, it’s not clear you make any connection whatsoever between these two activities.

To bring the two activities closer together, you need to get experience in seeing the
proofs at work in a programming language that the computer recognizes. And playing
out the activity of writing specifications and proofs together with programs has the
additional benefit that the computer can check the proofs for you. This way, you get
instant feedback that helps you understand what the proofs are all about. Instead of
turning in your handwritten homework and getting it back from the teaching assistant
a week later (when you have forgotten what the exercises were about and the teaching
assistant’s comments on your paper seem less important than next week’s looming
assignment), you can interact with the automated verifier dozens of times in a short
sitting, all in the context of the program you're writing!

Trying to teach program-proof concepts in the setting of an actual programming
language may seem like madness. Most languages were not designed for verification,
and trying to bolt specification and proof-authoring features onto such a language is at
best clumsy. Moreover, if you'd have to learn a separate notation for writing proofs or
interacting with the automated verifier, the burden on the learner becomes even much
greater. To really connect the program and proof activities, I argue you want to teach
verification in terms of software-engineering concepts (like preconditions, invariants,
and assertions), not in terms of induction schemas, semantics-mapping transforms,

and prover directives.

Luckily, there are several programming languages designed to support specifica-
tions and proofs (so-called verification-aware languages), and there are integrated devel-
opment environments (IDEs) that run the automated verifiers (sometimes known as
auto-active verifiers: automated tooling that offers interaction via the program text [82]).
Among these are the functional languages WhyML [20] and F* [53], the Ada-based
SPARK language [43, 117], the object-oriented language Eiffel [89, 44, 121], the im-
perative languages GRASShopper [126] and Whiley [109], and—what I use in this
book—Dafny [76, 78, 35]. In a similar spirit, but with annotation languages that have
been added to existing programming languages are ACL2 (for Applicative Common
LISP) [71], VeriFast (for C and Java) [64], the KeY toolset (for Java) [2], OpenJML (for
Java with JML annotations) [105, 26, 66], the Frama-C toolset (for C) [14], Stainless
(for Scala) [118], Prusti (for Rust) [5], Nagini (for Python) [45], Gobra (for Go) [4],
and LiquidHaskell (for Haskell) [86]. In the notes at the end of chapters, I occasion-
ally point out some alternative notation or other differences with these other tools, so
as to make the concepts and experiences taught in this book readily applicable to those
language settings as well.

Material

I have written this book to support the level of a second-year university course in com-
puter science. It can also be used as a comprehensive introduction for industrial soft-
ware engineers who are new to specification and verification and want to apply such
techniques in their work.

The book assumes basic knowledge of programs and programming. The style of
this prior programming (functional, imperative) and the particular prior language
used are not so important, but it is helpful if the prior programming has not completely
ignored the concept of types.

The book also assumes some basics of logic. The “and”, “or”, and “not” operators
from programming will go a long way, but some fluency with implication (logical con-
sequence) is also important. For example, a reader is expected to feel comfortable with
the meaning of a formula like

2<=X ==> 1Q<=4*(X+1)

The book’s Appendix B reviews some useful logic rules, but is hardly suitable as a first
introduction to logic. For that, I would recommend a semester course in logic.

Beyond the basics of logic, concepts like mathematical induction and well-founded
orderings play a role in program proofs. The book explains these concepts as needed.

The book is divided into three parts. Part 0 covers some foundations, leading up
to writing proofs. After that, Part 1 focuses on (specifications and proofs of) func-
tional programs and Part 2 on imperative programs. Other than occasional references
between these parts, Parts 1 and 2 are independent of each other.

Xi

What the Book Is Not

Here are some things this book is not:

It is not a beginner’s guide to programming. The book assumes the reader has
written (and compiled and run) basic programs in either a functional or impera-
tive language. This seems like a reasonable assumption for a second-year univer-
sity course in computer science.

It is not a beginner’s guide to logic, but see Appendix B for a review of some
useful logic rules and some exercises.

It is not a Dafny language guide or reference manual. The focus is on teaching
program proofs. The book explains the Dafny constructs in the way they are used
to support this learning, and Appendix A provides a cheat sheet for the language.
It is not a research survey. There are many (mature or under-development) pro-
gram-reasoning techniques that are not covered. There are also many useful pro-
gramming paradigms that are not covered. The mathematics or motivations be-
hind those advanced techniques are outside the scope of this book. Instead, this
book focuses on teaching basic concepts and includes best practices for doing so.
The book does not teach how to build a program verifier. Indeed, throughout
this book, I treat the verifier as a black box. A recurring theme is the process of
building proofs manually, which is good practice for interacting with any verifier.

How to Read This Book

Here is a rough chapter dependency graph:

5 (except
5.7,5.8)

Xii

Sections 13.7,15.0, and 16.1 depend on Chapter 4, but the rest of their enclosing chapters
donot. The dotted lines show recommended dependencies—it would be beneficial, but
not absolutely required, to study Chapter 7 before Chapters 8 and 12, and likewise to
study Chapter 6 before Chapter 12.

Dafny

All specifications, programs, and program proofs in the book use the Dafny program-
ming language and can be checked in the Dafny verification system. Broadly speaking,
the constructs of the Dafny language support four kinds of activities.

e There are constructs for imperative programming, such as assignment statements,
loops, arrays, and dynamically allocated objects. The simpler of these are the
bread and butter of many classic treatments of program proofs.

e There are constructs for functional programming, such as recursive functions and
algebraic datatypes. In Dafny, these behave like in mathematics; for example,
functions are deterministic and cannot change the program state.

e There are constructs for writing specifications, such as preconditions, loop invari-
ants, and termination metrics. The way these are integrated into the language
has been influenced by the pioneering Eiffel language and the Java Modeling
Language (JML). Specifications can use any of the functional-language features,
which makes them quite expressive.

o Lastly, there are constructs for proof authoring, such as lemmas and proof calcu-
lations.

These various features blend together. For example, all the constructs use the same
expression language; these expressions include chaining expressions (like 0 <= x <y
< 100), implication (==>), quantifications (forall, exists), and sets (like {2, 3, 5}),
which are often found in specifications and math, but can also be used in programs;
methods, functions, and proofs bind values to local variables in the same way; in a
method, an if statement divides up control flow, and in a lemma, it divides up proof
obligations; variables can be marked as ghost, which makes them suitable for abstrac-
tion, but otherwise behave as ordinary compiled variables; and induction is achieved
simply by calling a lemma recursively, where termination is specified and checked in
the same way as for methods and functions.

Not only is the Dafny language versatile, but so are its uses. The Dafny development
tools are quick to install and are available on Windows, MacOS, and Linux. The ver-
ifier runs automatically in the VS Code integrated development environment. Dafny
programs compile to executable code for several language platforms, including .NET,
Java, JavaScript, and Go. The toolset itself is available as open source at

github.com/dafny-lang/dafny

Even before this book, Dafny has been used in teaching for over a decade. It has also
been used in several impressive research projects (for example, at Microsoft Research,

xiii

VMware Research, ConsenSys R&D, CMU, U. Michigan, and MIT) and is currently in
industrial use (for example, at Amazon Web Services).

Online Information

Some additional information about this book is available online at

www.program-proofs.com

Acknowledgments

I have many to thank for helping make this book possible.

I extend my deep gratitude to Rajeev Joshi, Rosemary Monahan, Bryan Parno, Ce-
sare Tinelli, and especially Graeme Smith, who used earlier drafts of this book in teach-
ing their university courses. The book has greatly benefited from their feedback, and
from feedback of their students.

The detailed comments from Rajeev Joshi, Yannick Moy, Jean-Christophe Filliatre,
Peter Miiller, and Ran Ettinger were much beyond the call of duty and were really
helpful! I've also received good feedback from Nada Amin, Nathan Chong, David
Cok, Josh Cowper, Mikaél Mayer, Gaurav Parthasarathy, and Robin Salkeld.

I'm grateful for the encouragement of Byron Cook and Reto Kramer in the Auto-
mated Reasoning Group where I work at Amazon Web Services.

The term “program proofs” as a rubric for the kind of science and engineering that
this book is about was suggested by Nik Swamy.

To write and typeset this book, I used the Madoko system, and I thank Daan Leijen
for creating Madoko and for helping me with customizations.

A big shout-out to Kaleb, who drew the cheerful chapter illustrations.

Lastly, thank you, Gwen, for your loving support and the countless weekends we
spent at coffee shops while I was writing.

Thank you all!

KRM.L.

Notes for Teachers

Much thought goes into the selection and order of material in a book. Here, I describe
the purpose of and motivation for chapters in greater detail. If you're a learner and just
want to get started with the book, skip ahead to Chapter 0. If you're a teacher and want
to plan a course outline, this is for you.

Part 0

If you want to go beyond that fun put-your-feet-into-the-water experience, I strongly
recommend learning how to swim by paying attention to Chapters 3, 4, and 5 from
Part 0.

Dafny provides a considerable amount of automation. This allows you to write the
loop and array programs in Chapter 13 mostly by just supplying the necessary pre- and
postconditions and loop invariants, without the need to pain yourself with the details
of the proofs. In practice, when you leave those simpler programs, you will always
encounter situations where a tool’s automation runs out. A program-proof practitioner
needs to know how to deal with those situations, and Part 0 is aimed at providing the
necessary foundations.

Chapter 0

Chapter 0 sets the stage for the book and gives instructions for how to install the Dafny
integrated development environment (IDE).

Chapters 1 and 2

Chapter 1 introduces some programming concepts like methods and functions, as well
as fundamental specification concepts like pre- and postconditions.

If you want to start with the formal program-semantics underpinnings, then Chap-
ter 2 (after reviewing Appendix B) is your friend. If you're a pro at understanding and
dealing with formal equations, then your dream version of Chapter 2 would be a single
page with just definitions. Most new learners are not equipped to be illuminated by
equations alone, so I present the material in Chapter 2 more gradually and using aids
like flow diagrams. The diagrams echo Floyd’s seminal work, and I also incorporate

Xvi

Hoare’s way of explaining program behavior using triples, as well as Dijkstra’s way of
computing the first or last component of such triples given the other two.

If you're less interested in formal equations, then getting just a taste of Chapter 2
is enough for the rest of the book, with one exception. In Part 2, especially in Chap-
ters 13 and 14, I often calculate necessary correctness conditions by applying weakest
preconditions to a loop invariant and a loop-index update. I refer to this as “working
backward”. Those details are built up in Chapter 2 and I think that forms an important
part of understanding the correctness of imperative programs.

Because I want readers to be able to “think as a programmer” as much as possible, I
have preceded Chapter 2 with a lighter, more informal view of what it means to reason
about what is known at various program points. A learner who feels comfortable writ-
ing programs but less comfortable with math formulas may find Chapter 1 to be a good
preparation for Chapter 2. That’s what I recommend, but this book has also been used
by skipping Chapter 1 and going straight to Chapter 2, or by starting with the more
formal Chapter 2 and then using Chapter 1 as a first guide to some Dafny notation.

Chapters 3

Discussing termination, Chapter 3 centers around the concept of a well-founded order
and how that applies to recursive calls (termination for loops is covered in Chapter 11,
which introduces reasoning about loops). It may seem odd to place a chapter on ter-
mination so early in a book. Indeed, many programs can be written in Dafny with-
out any distraction from concerns about termination. This is because Dafny handles a
large proportion of termination concerns completely automatically. What I have found,
however, is that the day when a user first encounters a program that requires manual
intervention in a termination proof, the surprise and additional learning necessary to
understand what to do next require a large detour. Therefore, I have found termina-
tion to be an easier topic to cover early, before other concerns have become complicated.
Besides, doing some termination proofs provides a learner with good opportunities to
practice human-and-verifier interactions.

There is one more important reason to cover termination early. Without under-
standing termination, it is difficult and highly mysterious to explain mathematical in-
duction. Chapter 5, all of Part 1, and Chapter 12 rely heavily on inductive proofs, so
coming into those chapters with a good understanding of termination is helpful.

I do want to point out that I think of induction in a different way than many math
texts. Many treatments of induction are very strict about the format of base case/in-
duction hypothesis/induction step. These are often known as induction schemas. The
strict format gives better “side bumpers” for high school introductions to induction,
and induction schemas play an important role in logic or type theory where one wants
to give formal justifications of why induction works. But the way I present it, mathe-
matical induction is just about calling lemmas recursively. When recursion is taught
to programmers, you don’t talk about some strict syntactic format for how recursive
calls must be done, or some pre-declared “recursion schema” that precedes the body

XVii

of a recursive method. No, programmers are used to making a recursive (or mutually
recursive) call whenever they have a need to obtain the method’s behavior again on a
smaller problem size. Now, a key ingredient to the correctness of such recursive calls
is their termination. That is how I teach induction in this book—feel free to call any
lemma recursively, but when you do, make sure the recursive call terminates. In other
words, termination is not built into some kind of recursion schema, but is instead a
good-hygiene thing that you prove of any call.

For the most part, inductive proofs in this book do follow simple induction schemas
using tried-and-true idiomatic syntactic formats. So, don’t get all worried if that’s the
only way you’'ve used induction before. (But see Section 5.6 for an example that high-
lights the difference.)

Anyhow, that’s why termination is covered already in Chapter 3.

Chapter 4

Chapter 4 introduces algebraic datatypes. It is a simple chapter and its material will be
familiar to those with a functional-programming background. This chapter is placed
here because algebraic datatypes are great for teaching proofs, which is the subject of
the subsequent chapters. Datatypes are used heavily throughout Part 1, and they are
also used in some sections of Part 2.

Chapter 5

Being able to write manual proofs is essential to any nontrivial program development.
The role of Chapter 5 is to teach how this is done. The focus is on the formulation of
theorems and proofs, so I have chosen the subject of the theorems to be as familiar as
possible—arithmetic and the algebraic datatypes introduced in the preceding chapter.
I recommend Chapter 4 before Chapter 5, but it is possible to skip Chapter 4 if you also
skip Sections 5.7 and 5.8.

If you want more proof practice even after Chapter 5, then I recommend Chapters 6
and 7, in either order.

In mathematics, there are two roles of a proof. One role is to communicate a proof
to other mathematicians. The other is as a thinking tool during the development of
a theorem. For programs, proofs have the same two roles. When a proof is machine
checked, the communication I mentioned is between the user and the automated ver-
ifier. It is therefore crucial that proofs be practiced interactively with the verifier, just
as reaching fluency in a foreign language cannot be gained just by reading books—you
need to practice using it as a way of communication.

So, don't be satisfied by just reading Chapter 5. Redo the steps of the proofs yourself
so you get to experience the interaction with the verifier firsthand. Also, do exercises,
where the “answer” to what to do next is not right in front of you on the page. As eager
as I'm sure the learner will be at this point to dig into programs, learning how to write
proofs and communicate with the automated verifier will be well worth the time so
invested.

Xviii

Part1

Part 1 teaches specifications and proofs in the setting of functional programs. With re-
gard to program proofs, this setting has two main advantages. One is that data struc-
tures are immutable, so there is no need to keep track of changes to the program state.
The other advantage is that data and operations tend to be defined recursively, which
gives a consistent and natural way to structure proofs. Even if most of the programs
you write are imperative, you will use functional program fragments in specifications.
And if the programming language offers both imperative and functional constructs
(like Dafny does), you will find many good uses of functional features in those parts
of your imperative programs that are in fact immutable.

Chapters 6, 7, and 8

Chapter 6 introduces the basic ways to specify and reason about inductively defined
data structures, and in particular lists. Chapter 7 follows that up with an inductive
representation of unary numbers. Although not so interesting by themselves, unary
numbers give ample opportunity to practice proof skills. Chapter 8 specifies and veri-
fies two algorithms, both for sorting.

Chapters 9 and 10

Chapters 9 and 10 look at the structure of larger programs, paying attention to abstrac-
tion and information hiding. These concepts are at the core of good computer science
and also play a crucial role for program proofs. A module that provides a high level of
abstraction is often easier to both use and verify than a module that reveals too many
implementation details to its clients.

Modularity, abstraction, and information hiding apply equally well to imperative
programs, but the book first covers these topics in Part 1. Still, Part 2 can be read without
tirst reading Part 1.

Chapter 9 introduces some mechanics of structuring code into modules. It touches
on many small design decisions about what to reveal outside the module and what to
hide inside the module.

Chapter 10 introduces another cornerstone of computer science: invariants. Here,
the invariants talk about the properties of immutable data structures, and in Part 2 the
invariants talk about the state before loop iterations (Chapter 11) and the steady state
of mutable data structures (Chapter 16).

Chapters 10 and 16 both capture the data-structure invariants in a predicate by con-
vention named Valid(). This gives a more uniform treatment of the functional and
imperative settings, reduces the number of concepts needed to understand invariants,
and always makes it clear what properties hold and where they hold. The downside
of the explicit Valid() predicates is that they can make specifications verbose. Vari-
ous languages (including Dafny) provide predicate subtypes (aka subset types, refinement
types, or dependent types) that in effect incorporate the Valid() predicate into a type.

Xix

With two more chapters in Part 1, I would have covered them, too, but in choosing
between them, I decided on keeping types and other invariants separate.

Part 2

Part 2 introduces ways to reason about imperative programs. While Part 1 is not a
prerequisite of Part 2, imperative programs do use functions and modules to organize
code and write modular specifications. Part 2 speaks about these as needed, but refers
to Part 1 for a fuller treatment. As I've mentioned before, if you want to learn to do
proofs well for imperative programs (beyond a quick tour of Chapter 11), I strongly
recommend first learning the concepts of termination and proofs from Part 0.

Chapter 11

One of the most conspicuous programming constructs in imperative programming is
the loop. Reasoning about loops using loop invariants is the subject of Chapter 11.
Most beginners struggle with loop invariants. From a teaching perspective, I have two
recommendations about loops, both of which are reflected in the book.

The first recommendation is to treat loop invariants as specifications for loops, rather
than as an afterthought that seeks to explain what the loop body does. One way to do
this is to hide the loop body from view. In a live demonstration, you can get this effect
by collapsing the loop body using the IDE’s outlining features. In Dafny, you can also
do this by omitting the body of a loop altogether! For example, the Dafny verifier will
accept and prove correct the program

method BodylessLoop() {

var s, n := 0, 0;
while n < 100

invariant 0 <= n <= 100 && s == 4 * n
assert s + n == 500;

}

despite the fact that the body of the loop is omitted. The point that needs to come
across is that one reasons about the use of the loop from the invariant alone, without
peering into its body, and one reasons about the correctness of the body without con-
sidering where the loop is used. That is, the loop invariant is like a contract between
the context that uses the loop and the implementation of the loop. This is the same idea
as reasoning about methods in terms of their specifications, not their implementations
(as explained in Chapter 1). Yet, I have found that this idea is harder to get across for
loops than for methods, which I suspect is because the loop body is “right there” and
it’s impossible for beginners to resist the temptation to look at the loop body.

So, when learning about loop invariants, my recommendation is to try, as much as
possible, to separate the loop specification from its body. (Others sources that stress
this include Hehner [61] and Morgan [93].)

XX

My other recommendation when teaching about loops is to avoid for loops. Once
you're comfortable with loop invariants, for loops are convenient and concise. But
before you understand invariants, the fact that the update of the loop index (e.g., i :=
i + 1;) is implicit makes it much harder to understand what value of the loop index
the invariant is supposed to hold for. Also, the helpful step of “working backward”
from the loop invariant becomes hard to explain if you cannot see the loop-index update
at the end of the loop body.

So, my recommendation is to stick with the more verbose while loops when teach-
ing (at least until after Chapter 13).

Chapter 12

After the introduction of loops and loop invariants in Chapter 11, Chapter 12 intro-
duces a practically important topic: going from recursively defined specifications to
iteratively defined implementations. I think this topic was omitted from many of the
program-verification books that expected proofs to be done by hand. When you do
this work with paper and pen, you are free to invent convenient notations where you
“know” what they say without having to be entirely formal about them. For example,
you may notate the number of integers from a to b that satisfy a predicate P by

(#i:: a<i<b A P(i))

This notation is beautifully agnostic about which “end” you remove an element from.
For example, if we write || P(a)|| to denote 1 if P(a) holds and 0 otherwise, then, for
a < b, the properties

(#i:: a<i<b A P@i) = ||Pla)||+(#i: a+1<i<b A P(i))
and
(#i::a<i<bA P@i) = (#i: a<i<b—1A P@i)+||P0b-1)|

are equally obvious. But if the # comprehension is defined recursively (inductively),
which is most likely in a computer-aided verification system (unless # is built in, see
e.g. [81]), then you have to choose at which end of the range a < ¢ < b the recursion
(induction) happens. This has an effect on what you have to do when verifying a loop
for computing these things, since a loop also has to choose which direction (up or
down) to evolve the loop index. I have seen many people (not just beginners) get stuck
on this point, which is why I have devoted Chapter 12 to this topic, before doing more
interesting algorithms in Chapter 13 and beyond.

Chapter 13

The 1980s brought not just a lot of good music but also several excellent books on pro-
gram proofs. The classic gems by Backhouse [12], Cohen [29], Dijkstra and Feijen [41],

XXi

Gries [55], Hehner [61], Kaldewaij [68], Morgan [93], Reynolds [113], and Van de
Snepscheut [122] often covered some Boolean algebra, then some formal program se-
mantics (typically Hoare triples or weakest preconditions), and finally some example
applications of what you might call “loop and array programs”. These are wonderful
textbooks. It’s too bad the 1980s didn’t bring the CPU speeds and tools needed to carry
out these program proofs on a computer.

If you're familiar with these classic books, you'll feel right at home with Chapter 13,
which covers several fun and instructive algorithms—many of which have been di-
rectly inspired by examples in the classic textbooks. If you carefully pick a subset of
the sections in Chapter 13, you could get away with skipping Chapter 12. However, for
someone wanting to learn program proofs well, I think the considerations in Chapter 12
are at least as instructive as proving the algorithms in Chapter 13.

A fine introductory course on program proofs would be to cover or review the
Boolean algebra in Appendix B, then cover (some of) the program semantics in Chap-
ter 2, followed by the loop and array programs in Chapters 11, 12, and 13. Although
this wouldn’t give the same depth and practical fluency as starting with all of Part 0, it
gives the learner a quicker path to proving properties of small, interesting programs.

Chapters 14 and 15

Chapter 15 continues with more algorithms on arrays, but since those algorithms (un-
like the ones in Chapter 13) modify the arrays, I first introduce the topic of state modi-
fications in Chapter 14. This topic is part of what more generally is called framing. The
Chapter 14 introduction of framing is gentle enough that it justifies being a prerequisite
for Chapter 15.

I imagine that many university classes that want to cover all the basics of program
proofs for imperative programs will find Chapter 15 to be a good chapter to end with.

Chapters 16 and 17

The final two chapters of the book introduce more difficult mutations of dynamically al-
located data structures. Some programmers who come from C- or Java-like languages
may feel an urgent need to conquer these chapters. That’s all good, but I feel com-
pelled to point out that many programming tasks can be performed equally well using
immutable data structures like those in Part 1 of the book. I might have said “com-
pelled to issue the reminder that” in the previous sentence instead of “compelled to
point out that”, but in my experience, this point is not always apparent to those whose
primary programming language does not offer support for such types. If your prob-
lem can be solved with datatypes rather than with classes, then your proof effort will be
both smaller and more pleasant (note, for example, that the class in Exercise 16.4 uses
a datatype List rather than an imperative linked list stitched together via pointers).
Chapters 16 and 17 explain how to specify and verify mutable, heap-allocated data
structures that may evolve over time. The main difference that makes this more dif-
ficult than specifying the immutable data structures of Chapters 9 and 10 is framing.

XXii

Essentially, framing comes down to keeping track of (or, in some cases, separating) all
the objects that are used as part of a mutable data structure. This was introduced for
simple cases in Chapter 14, so the main ingredient that is added in Chapters 16 and 17 is
abstraction, that is, the ability to specify a frame to be a particular set of objects without
having to divulge the exact identities of those objects to clients.

It’s interesting that the only facilities needed in a language to handle framing and
abstraction are modifies/reads clauses, sets, and ghost variables. Hence, these two
last chapters build nicely on previous material in the book. Some languages and veri-
fiers instead provide ways to restrict the use of object references. This can streamline
some patterns of specifications, but requires explaining the restrictions imposed (like
systems of object ownership a la Spec# [13] or Rust [115]) or the more complicated un-
derlying logics (like separation logic [64] or implicit dynamic frames [98]). The issues
and concerns are the same, so what is learnt from using the specifications in this book
carries over to other formalisms.

On some material omitted

Some kinds of programs are trickier to get past a mechanical verifier than others. I've
tried to avoid such complications when possible. For example, the book uses only a
limited amount of multiplication, because multiplication of several variables is an area
where automation is typically weaker. If you design your own exercises, then I sug-
gest not going rampant with the use of multiplication (and make sure you first try the
exercises yourself).

Other expressions that require some finesse are quantifiers and comprehensions.
There are plenty of quantifiers in the book, but I've tried to stay clear of nested or oth-
erwise complicated quantifiers. (And the only program that uses quantifiers before
Chapter 13 is the IsMin predicate in Chapter 10.) Quantifiers are important, but it’s
both unfair and unnecessary to subject students to the ways of taming quantifiers until
after they acquire a good understanding of program proofs and a fluency in interacting
with the verifier.

One tricky area that I was not able to avoid is that of extensionality for collection
types (in particular, multisets and sequences). In Sections 10.2.4 and 13.4, I include
some detours to explain what is needed.

Chapter 0

Introduction

For many of us, programming started with some simple scripts that print messages on
a terminal, display rectangles of various colors on the screen, or maybe even send chat
messages between friends on mobile devices. The process of writing or modifying
such a program is to add a couple of lines of code and then run the program to see
what effect your change had. When we finally see the program print “Hello, Rustan!”,
show rectangles that are aqua and magenta, or automatically insert emojis when chat
messages contain certain keywords, then we feel a sense of accomplishment that our
program behaves like we want. The program works!

Not all programs are like that. Typically, we can’tjust run a program once and deter-
mine that it always works—that the program is correct. In fact, we may run the program
many times and get the feeling it is correct, but then someone (maybe a customer of
our service-oriented software-powered business) finds a way to use the program that

2 CHAPTER 0. INTRODUCTION

causes it to behave in a way we did not intend. The program crashes. The program
corrupts customer data. Worse, the program enables unauthorized access to personal
information. We’d like to know our programs do not suffer from such problems. But
how can we tell if a program is correct? And what does it even mean for such a program
to be correct?

Reasoning about the behavior of programs is the subject of this book. The subject
is best approached after you have done at least a semester of programming, maybe
even two. This means you're accustomed to basic programming constructs. You've
written some programs that you've struggled with. You've tried your own hand at
determining if your programs are correct, how to test and debug them, and how to
try—repeatedly—to correct them.

This book teaches you how to think about programs and how to prove them correct,
thatis, how to construct precise arguments that show the programs behave as intended.
Such rigorous arguments also help sharpen your thinking, so that you more readily
understand how to write programs that are correct—after all, the only programs that
you can prove to be correct are those that are correct. The process of proving a program’s
correctness often discovers bugs (errors, defects, omissions, typos, think-0’s, call them
what you may), and fixing the bugs is part of the road to correctness.

Techniques that reason precisely about programs fall under the rubric of formal
methods. This name implies the use of precise mathematics, logic, and formal proofs.
Indeed, throughout the book, I will make use of rigorous proofs and detailed logical
justifications—in fact, so detailed that the justifications can be mechanically checked by
a computer. The basic concepts that go into this formal process (for instance, the con-
cept of a precondition or invariant) are useful also when describing a program’s behavior
informally. The formal, machine-assisted process helps you make sure you don't forget
or miss any details, and it can be reapplied automatically when a program undergoes
changes.

0.0. Prerequisites

As part of teaching you how to reason about programs in this book, I will teach you
some things about specifications, abstraction, lemmas, and (a lot of) proofs. I do not
assume you have any prior knowledge of these topics. If you did some proofs by in-
duction in high school and remember what that was all about, that may be a plus, but
it’s not necessary. (In fact, if you have a lot of familiarity with topics like induction,
you may find that I teach them and think about them in a way that differs from some
common accounts. I attribute this to the fact that I'm a programmer, not a logician.)
What I do assume is that you are familiar with writing programs. Specifically, I as-
sume you have a working knowledge of variables, bindings and mutable assignments,
if statements, loops, and recursion. I assume you understand the idea that a program
execution is a trace through the program’s statements (the control flow) and that the
state of a program consists of the values of the program’s variables (the program data).

0.0. PREREQUISITES 3

The part of logic that one unavoidably learns when writing programs is booleans
(false and true) and the common operations on these values. I assume you've en-
countered expressions like “A and B”, “A or B”, and “not A”. In logic, these are often
notated, respectively, as

ANB AV B -A

whereas in programming notation (and in this book), they are more often written as
A & B Al B 1A

Logical “and” is also called conjunction, so we refer to the operands of && as conjuncts.
Similarly, logical “or” is called disjunction, so we refer to the operands of | | as disjuncts.
The negation operator binds stronger than “and” and “or”, so !'A && B is the same as
('A) && B, and you have to leave the parenthesesin ! (A && B) if you intend to express
that at most one of A and B holds.

In specifications, the logic expression “A implies B” is often used. Notated as A =
B or A ==> B, this expression says that “if A is true, then so is B”. It can be written in
terms of the other operators as !A || B, but the arrow many times improves the intu-
itive understanding of how we use implication in specifications. For example, suppose
we want to write down “if I'm at a coffee shop, then I drink espresso” and “if I'm at the
gym, then I drink water”. These are nicely formulated as

(AtCoffeeShop ==> DrinkEspresso) && (AtGym ==> DrinkWater)

The operator ==> binds weaker than & and | |, as is suggested by the fact that ==>is 3
characters wide, whereas the others are only 2 characters wide.

Exercise 0.0.
Write this drink implication using the form !'A || Binstead of the form A ==> B. Be
sure to use parentheses in the right places. Which formulation do you find easier to
understand?

The arrow notation for implication also suggests an ordering between A and B. If A
==> B is a condition that always holds, then we say that A is stronger than B and that
B is weaker than A. For example, AtCoffeeShop is stronger than DrinkEspresso, and
DrinkWater is weaker than AtGym. If we’re talking about some condition A and we add
a conjunct B to it, then we say that we strengthen A with B, because A && Bis stronger than
A (thatis, A && B ==> A always holds). Similarly, if we add a disjunct B to a condition
A, then we say that we weaken A, because A || Bisweaker than A (thatis,A ==> A || B
always holds). The strongest of all conditions is false, and the weakest of all conditions
is true.

Here and throughout, when I use the comparison words “stronger”, “weaker”, “be-
low”, or “above”, then I'm also allowing the possibility that the things being compared
are equal. If it becomes necessary to exclude equality, I will say strictly stronger, weaker,
below, or above.

As for program notation, it’s good if you are able to at least read the syntax of a C-
or Java-like program, meaning a program where variables and procedure signatures

4 CHAPTER 0. INTRODUCTION

contain types, where curly braces surround blocks of code, and where operators like
== (equality) and && (conjunction, “and”) feel familiar. In short, if you feel comfortable
in your understanding of a program like

int sum(int[] a, int n) {
int s = 0;
for (int 1 = 0; 1 < n; i++) {
s += al[i];
}
return s;

}

which computes the sum of the integer elements of an array a, then you are ready for
this book. It’s also fine if your background in programming comes from a functional
language like OCaml or Haskell.

0.1. Outline of Topics

I start with some simple programs where we can talk about what it means for a prop-
erty to hold at a particular program point (Chapter 1). The chapter uses parameterized
procedures, introduces pre- and postconditions, and describes how to reason about
variables and control flow. In Chapter 2, I present a formal treatment of the same ma-
terial. This is the foundation for the entire book and is essential to understand. In the
rest of the book, I will rely on the understanding of program reasoning that you get
from Chapters 1 and 2, but I will then do the reasoning directly on the programs rather
than continuing to show the steps in the underlying semantics.

Next, my goal is to prepare you for writing proofs. An issue that comes up through-
out is that of termination. When the topic of termination comes up for induction, recur-
sion, or loops, it gets entangled or easily confused with other concerns. Therefore, in
Chapter 3, I cover the topic of termination by itself.

If I'm going to show you how to write proofs and teach you about induction, we
need to have something to write proofs about. Some data structures from functional
languages are perfect here, because they are defined recursively and they are mathe-
matical in nature. Therefore, I cover inductive datatypes in Chapter 4. If you've done
functional programming before, that chapter will be a breeze.

In Chapter 5, I introduce lemmas, which are claims that require proof. I show how
to write calculational proofs and how to use induction.

Those initial chapters are gathered into Part 0 and cover the foundations for the pro-
gramming in the rest of the book. Part 1 then considers functional programs and Part 2
considers imperative programs. Parts 1 and 2 are mostly independent of each other,
so you can go directly from Part O to Part 2 if you're mostly interested in imperative
programs.

In Part 1, Chapters 6, 7, and 8 treat standard ideas in functional programming: lists,
unary numbers, and some sorting routines. Chapters 9 and 10 cover the concepts of

0.2. DarNny 5

modules, abstraction functions, and data-structure invariants, which are considered for
larger examples. Although I introduce them in Part 1, abstraction and data-structure
invariants are equally important for imperative programs.

Part 2 is about imperative programs with mutable state, that is, variables whose val-
ues you can change. A programming construct that’s specific to imperative programs is
the loop, which I discuss in Chapter 11. This introduces loop invariants, another instance
of the general concept of invariants, which are a cornerstone in reasoning about all pro-
grams. Chapter 12 blends recursive function definitions and iterative loops. Loops, ar-
rays, and quantifiers are like three peas in a pod, and Chapter 13 discusses these with
numerous examples. To get into programs that modify arrays and objects in the heap
(that is, in the dynamic-storage area of a program), Chapter 14 gently introduces the
concept of a frame, which lets a specification focus on a part of the heap. It is followed
by Chapter 15, which presents many more examples that modify the contents of ar-
rays. I continue the treatment of frames in Chapter 16, which focuses on classes and
objects, class invariants, abstraction (again, like in Chapters 9 and 10), and dynamic
frames, which are used to specify modifications among objects. Chapter 17 then uses
these techniques in four more programs that use dynamic, mutable object structures.

0.2. Dafny

Throughout this book, I use the programming language Dafny to illustrate the learning
points [78, 76]. Dafny is a great fit for this, because it was designed for reasoning,
and it includes constructs for both imperative and functional programming, as well as
for writing specifications, defining pieces of mathematics, stating lemmas, and writing
proofs.

Importantly, Dafny has an associated program verifier that checks program correct-
ness and all proof steps. The verifier offers a high degree of automation, so you don’t
need to provide many of the smaller proof steps. In fact, when I first teach about induc-
tive proofs in Chapter 5, we will have to disable some of Dafny’s automation, or else it
will do most of the proofs for us and you won't learn anything.

Dafny has been used for over a decade at several dozens of universities worldwide.
It has also been used in some systems-building and verification projects, as well as in
industrial applications.

The curly-brace block-structure syntax of Dafny is Java-like, and so are its imperative
loops and classes [54]. Dafny’s functional constructs include functions and ML-like
inductive datatypes [90] (and also Haskell-like coinductive datatypes, but I won't cover
those in this book [110]). The Eiffel-like specification constructs (“contracts” [89]) are
checked by Dafny’s program verifier. A sketch of Dafny’s syntax and a rundown on its
constructs are given in Appendix A.

Dafny is an open-source project (github.com/dafny-lang/dafny) and is available
on Windows, Mac, and Linux platforms. It has several integrated development envi-
ronments (IDEs), including VS Code from

6 CHAPTER 0. INTRODUCTION

code.visualstudio.com

To get started, install VS Code onto your machine. Then, click the Extensions button,
search for the Dafny extension from dafny-lang, and click to install it. This book was
written to target Dafny version 4 (note that the VS Code extension uses a different
versioning scheme, but it mentions the underlying version of Dafny). Dafny program
files have extension .dfy, so after you select File->New Text File from the menu, save
the file with a filename that ends with .dfy (for example, MyProgram.dfy).

The verifier will run automatically as you type in your program, so there are no
additional commands you need to know.

Well, programs are only verified as you go. If you want to run your program, you
have to first right-click the buffer and select Compile or Compile and Run (the entry point
into your program is a method called Main()). As you go through this book, I will not
be surprised if you often forget that programs can be run—most of your time will be
spent specifying, writing, and proving the programs, and when the verifier finally has
no more complaints, you know the program satisfies the specification (so why even
run it, right? ©).

If you want to write your own build scripts for a project, or if you for any other rea-
son want to run the dafny tool from the command line, see the installation instructions
at github.com/dafny-lang/dafny.

0.3. Other Languages

Though I use Dafny to teach the concepts of program proofs, you can apply these con-
cepts in other languages. For example, Jean-Christophe Fillidtre has written WhyML
versions of many programs in this book. They are available at

github.com/backtracking/program-proofs-with-why3

and can be verified using the Why3 tool. Similarly, Peter Miiller has collected Viper,
Prusti, and Gobra versions of many of the programs in this book, available from

www.pm.inf.ethz.ch/program-proofs

You will also find that tools like SPARK and F* provide similar verification experiences.

Notes

Being formal helps when you're trying to be precise. But if you understand how to
reason about programs, you can be precise without always being fully formal. Carroll
Morgan teaches a course he calls Informal Methods, which stresses the point that rigor-
ous thinking about programs is crucial to program reasoning, whether or not you ever
write down any mathematical formulas [94].

